Blow-Up Analysis for a Quasilinear Degenerate Parabolic Equation with Strongly Nonlinear Source
We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear source ut=div(|∇um|p−2∇ul)+uq, (x,t)∈RN×(0,T), where N≥1, p>2 , and m, l, q>1, and give a secondary critical exponent on the decay asy...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/109546 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate the blow-up properties of the positive solution of the Cauchy problem for a quasilinear degenerate parabolic equation with strongly nonlinear source ut=div(|∇um|p−2∇ul)+uq, (x,t)∈RN×(0,T), where N≥1, p>2 , and m, l, q>1, and give a secondary critical exponent on the decay asymptotic behavior of an initial value at infinity for the existence and nonexistence of global solutions of the Cauchy problem. Moreover, under some suitable conditions we prove single-point blow-up for a large class of radial decreasing solutions. |
---|---|
ISSN: | 1085-3375 1687-0409 |