A Neutron Source Based on Spherical Tokamak
The paper presents a conceptual study of a neutron source based on a spherical tokamak (ST). The plasma scenario chosen for the ST is non-thermal fusion (hot ion mode), which is extensively used on machines like JET and TFTR deuterium–tritium (DT) experiments, which seems suited for low fusion gain...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Energies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1996-1073/18/8/2029 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The paper presents a conceptual study of a neutron source based on a spherical tokamak (ST). The plasma scenario chosen for the ST is non-thermal fusion (hot ion mode), which is extensively used on machines like JET and TFTR deuterium–tritium (DT) experiments, which seems suited for low fusion gain reactors. As demonstrated in experiments, this scenario is a robust tool for neutron production. Starting from a new scaling law of energy confinement tested, approximately, on ST40 spherical tokamak, the parameters of a 15 MW ST DT fusion reactor (ST180) are derived, and a preliminary radial build of the machine is established. |
|---|---|
| ISSN: | 1996-1073 |