Integrable models on Rydberg atom chains

We initiate a systematic study of integrable models for spin chains with constrained Hilbert spaces; we focus on spin-1/2 chains with the Rydberg constraint. We extend earlier results for medium-range spin chains to the constrained Hilbert space, and formulate an integrability condition. This enable...

Full description

Saved in:
Bibliographic Details
Main Author: Luke Corcoran, Marius de Leeuw, Balázs Pozsgay
Format: Article
Language:English
Published: SciPost 2025-04-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.18.4.139
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We initiate a systematic study of integrable models for spin chains with constrained Hilbert spaces; we focus on spin-1/2 chains with the Rydberg constraint. We extend earlier results for medium-range spin chains to the constrained Hilbert space, and formulate an integrability condition. This enables us to construct new integrable models with fixed interaction ranges. We classify all time- and space-reflection symmetric integrable Rydberg-constrained Hamiltonians of range 3 and 4. At range 3, we find a single family of integrable Hamiltonians: the so-called RSOS quantum chains, which are related to the well-known RSOS models of Andrews, Baxter, and Forrester. At range 4 we find two families of models, the first of which is the constrained XXZ model. We also find a new family of models depending on a single coupling $z$. We provide evidence of two critical points related to the golden ratio $\phi$, at $z=\phi^{-1/2}$ and $z=\phi^{3/2}$. We also perform a partial classification of integrable Hamiltonians for range 5.
ISSN:2542-4653