Simulation of the Radiation Reaction Orbits of a Classical Relativistic Charged Particle with Generalized Off-Shell Lorentz Force

We review the formulation of the problem of electromagnetic self-interaction of a relativistic charged particle in the framework of the manifestly covariant classical mechanics of Stueckeleberg, Horwitz, and Piron. The gauge fields of this theory, in general, cause the mass of the particle to change...

Full description

Saved in:
Bibliographic Details
Main Authors: Aviad Roitgrund, Lawrence Horwitz
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2010/602784
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We review the formulation of the problem of electromagnetic self-interaction of a relativistic charged particle in the framework of the manifestly covariant classical mechanics of Stueckeleberg, Horwitz, and Piron. The gauge fields of this theory, in general, cause the mass of the particle to change. We study the four dynamical off-mass-shell orbit equations which result from the expansion of Green's function in the Lorentz force equation for the self-interaction. It appears that there is an attractor in this system which stabilizes the motion of the relativistic charged electron. The attractor may acquire fractal characteristics in the presence of an external field and thus become a strange attractor.
ISSN:1026-0226
1607-887X