MSDG: Multi-Scale Dynamic Graph Neural Network for Industrial Time Series Anomaly Detection

A large number of sensors are typically installed in industrial plants to collect real-time operational data. These sensors monitor data with time series correlation and spatial correlation over time. In previous studies, GNN has built many successful models to deal with time series data, but most o...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhilei Zhao, Zhao Xiao, Jie Tao
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/22/7218
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A large number of sensors are typically installed in industrial plants to collect real-time operational data. These sensors monitor data with time series correlation and spatial correlation over time. In previous studies, GNN has built many successful models to deal with time series data, but most of these models have fixed perspectives and struggle to capture the dynamic correlations in time and space simultaneously. Therefore, this paper constructs a multi-scale dynamic graph neural network (MSDG) for anomaly detection in industrial sensor data. First, a multi-scale sliding window mechanism is proposed to input different scale sensor data into the corresponding network. Then, a dynamic graph neural network is constructed to capture the spatial–temporal dependencies of multivariate sensor data. Finally, the model comprehensively considers the extracted features for sequence reconstruction and utilizes the reconstruction errors for anomaly detection. Experiments have been conducted on three real public datasets, and the results show that the proposed method outperforms the mainstream methods.
ISSN:1424-8220