Plant tissue-based scaffolds filled with oil function as adipose tissue mimetics
Cellulosic scaffolds filled with oil were designed to replicate animal adipose tissues. Many plants are structured as polysaccharide-based cellular solids. They maintain their integrity after drying, can serve as a scaffold for incorporating fat, and do not lose integrity upon heating, thus resembli...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-01-01
|
| Series: | Current Research in Food Science |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2665927125000334 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Cellulosic scaffolds filled with oil were designed to replicate animal adipose tissues. Many plants are structured as polysaccharide-based cellular solids. They maintain their integrity after drying, can serve as a scaffold for incorporating fat, and do not lose integrity upon heating, thus resembling native adipose tissue. Carrots, broccoli, and asparagus were freeze-dried and subsequently filled with peanut oil, its glycerolysis product (GP), and the oleogel of this GP. Oleogel-filled scaffolds displayed high oil binding capacity (≥95%), and an oil loss resembling that of adipose tissue. In addition, the texture of oleogel-filled asparagus and broccoli tissue closely resembled that of beef and pork adipose tissues, respectively. Plant scaffolds closely emulated the temperature-dependent rheological behavior of adipose tissue. These new materials could significantly improve the quality of plant-based meat analogues, such as burgers and sausages, by preventing the thermal softening of the material upon cooking and excessive oil loss. |
|---|---|
| ISSN: | 2665-9271 |